
Voltage Transducer LV 100-800

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{DN} = 800 \text{ V}$

Electrical data

$oldsymbol{V}_{ ext{PN}} \ oldsymbol{V}_{ ext{P}} \ oldsymbol{I}_{ ext{PN}}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		800 0 ± 1200 12.5		V V mA
$R_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{ m Mmin}}$	R_{Mma}	x
	with ± 15 V	$@ \pm 800 \text{ V}_{max}$ $@ \pm 1200 \text{ V}_{max}$	0 0	170 90	Ω
I _{SN} K _N	Secondary nominal r.m.s. current Conversion ratio		50 800 V /	′50 mA	mA
V _c	Supply voltage (± 5 %	b)	± 15		V
I _C	Current consumption		10 + I _s		mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV

Accuracy - Dynamic performance data

\mathbf{X}_{G} Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ ± 0.7 \mathbf{e}_{L} Linearity < 0.1		% %
$ \begin{aligned} \textbf{I}_{\text{O}} & & \text{Offset current } @ \ \textbf{I}_{\text{P}} = 0, \ \textbf{T}_{\text{A}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{OT}} & & \text{Thermal drift of } \textbf{I}_{\text{O}} & & 0^{\circ}\text{C} \ + 70^{\circ}\text{C} & \pm 0.2 \\ \textbf{t}_{\text{r}} & & \text{Response time } @ \ 90 \ \% \ \text{of } \ \textbf{V}_{\text{P max}} & & 100 \end{aligned} $	Max ± 0.2 ± 0.3	mΑ mΑ μs

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	0+70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	8000 : 2000	
Р	Total primary power loss	10	W
$R_{_1}$	Primary resistance @ T _A = 25°C	64	$k\Omega$
R _s	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	850	g
	Standards 1)	EN 50178	

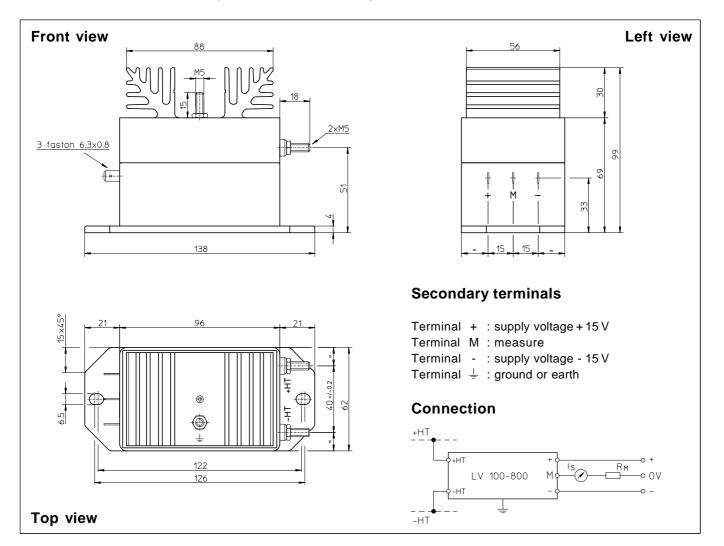
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note: 1) A list of corresponding tests is available

981105/3

Dimensions LV 100-800 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque
- ± 0.3 mm 2 holes Ø 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.